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Abstract. We present quantitative results on the cross section for γ + γ (Jz = 0) −→ bb̄ −→ two b–jets
based on the recently achieved all orders resummation of large soft (Sudakov) and hard (non-Sudakov)
double logarithms. The next–to–leading order QCD perturbative corrections are included exactly. We find
that one needs to include at least four loops for the novel hard leading logarithms, on the cross section level,
in order to be safe from large opposite sign cancellations that plagued earlier phenomenological studies. We
find that the background to intermediate mass Higgs boson production at a future photon linear collider
(PLC) is thus reasonably well under control and should allow the direct determination of the partial Higgs
width Γ (H −→ γ + γ). Assuming high efficiency b-tagging, the total Higgs width measurement at a PLC
is thus a realistic goal.

1 Introduction

The measurement of the total Higgs width is one of the
most important goals of a future γγ collider. Besides pro-
viding various other physics opportunities, such as the
determination of the CP eigenvalues of a Higgs boson,
the photon linear collider (PLC) offers so far the only
possibility of a direct measurement of the partial width
Γ (H −→ γ + γ) for an intermediate mass Higgs parti-
cle [1]. With the knowledge of the respective branching
ratio BR(H −→ γ + γ) from a Higgs production process
at some earlier collider experiment [2,3], the total Higgs
width can be reconstructed. This in turn permits a model
independent determination of various other partial widths.

Using Compton backscattering [4,5] of initially polar-
ized electrons and positrons at a linear collider, the domi-
nant background for a Higgs boson below the W± thresh-
old is from γ + γ (Jz = 0) −→ b + b. While this back-
ground is suppressed by m2

b

s at the Born level (unlike the
Jz = ±2 background which has no such mass suppres-
sion), higher–order perturbative QCD corrections remove
this suppression [6]. In addition, very large virtual (non-
Sudakov) double logarithms (i.e. log2(s/m2

b)) are present
at each order in perturbation theory, and at one loop these
can lead to a negative cross section in the central produc-
tion region where the Higgs signal is expected [7]. In [9] it
was shown that positivity of the cross section is restored by
the leading two–loop non–Sudakov logarithmic corrections
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and recently, in [10], these corrections were resummed to
all orders.

The problem with previous [6,7] phenomenological
studies was that the large higher–order leading logarith-
mic corrections were not known and therefore not included.
It is the purpose of this study to quantify the effect of these
higher–order logarithms on the cross section. We include
all the results presently available — the exact one–loop
correction [7] and the leading double logarithms to all or-
ders — to make more reliable predictions for the Higgs
background.

We do not attempt here a full Monte Carlo study of
the signal and background taking all hadronization and
detector effects into account. Instead, we note that the
dominant configuration of the Higgs signal process is a
pair of back–to–back jets, produced centrally, each con-
taining a b quark that can in principle be tagged using
a vertex detector. We therefore calculate the background
cross section for the same topology. Note that this means
excluding multi(≥ 3)–jet topologies and also two-jet con-
figurations arising from Compton-like 2 → 3 scatterings,
as studied in detail in [6], where only one of the two jets
contains a b quark.

For simplicity, we normalize all our cross sections to
that of the leading order γ + γ (Jz = 0) −→ b + b process.
The Born amplitude for this is given by

MBorn(λγ , λq) =
8παQ2

q

(1 − β2 cos2 θ)
2mq√

s
(λγ + λqβ) (1)

where λγ and λq label the helicities of the photon and
quark respectively. The Born cross section for the (Jz = 0)
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helicity state is then

dσBorn

d cos θ
(γ + γ −→ q + q) =

12πα2Q4
q

s

β
(
1 − β4

)
(1 − β2 cos2 θ)2

(2)

where β =
√

1 − 4m2
q

s denotes the quark velocity. Here Qq

is the charge of the quark with mass mq, α = 1
137 is the

fine structure constant, θ is the quark scattering angle in
the center–of–mass frame, and

√
s is the overall center–

of–mass scattering energy.
The paper is structured as follows. We begin in the

next section by summarizing the results of [10] and dis-
cussing the real gluon emission contributions. Numerical
results are given in Sect. 3 and we make concluding re-
marks in Sect. 4.

2 Higher–order corrections

The Born cross section for polarized γγ (Jz = 0) → qq col-
lisions given in (1) receives large ∼ (αs log2(s/m2))n cor-
rections at each order in perturbation theory. These ‘novel’
hard1 double logarithms arise from corrections which are
effectively cut off by quarks, rather than soft gluons which
generate the usual Sudakov double logarithms. In [10] we
showed how these new double logarithmic (DL) correc-
tions can be resummed to all orders in perturbation the-
ory. The result takes the form of a confluent hypergeomet-
ric function 2F2 which possesses a log

(
αs

π log2 m2

s

)
high

energy limit. Taking into account the m√
s

suppression con-
tained in the Born amplitude (1), the new corrections are
well behaved as s −→ ∞. The series expansion agrees with
the known one– and two–loop results of [7,9] as well as our
explicit three–loop calculation [10].

It was furthermore shown in [10] that at three loops all
additional doubly logarithmic corrections are described by
the exponentiation of Sudakov logarithms at each order in
the expansion of the new hard form factor. This behavior
is already present at one and two loops and can thus safely
be extrapolated to all orders.

For completeness, we list here the resulting virtual DL–
form factor contribution to the amplitude for the process
γ + γ (Jz = 0) −→ q + q:

MDL = MBorn

{
exp (FA) + F 2F2(1, 1; 2,

3
2
;
1
2
F)

+2F 2F2(1, 1; 2,
3
2
;

CA

4CF
F)

+F 2F2(1, 1; 2,
3
2
;
1
2
F) [ exp (FA) − 1]

+2 F 2F2(1, 1; 2,
3
2
;

CA

4CF
F) [ exp (FA) − 1]

}

= MBorn

{
1 + F 2F2(1, 1; 2,

3
2
;
1
2
F)

1 We use the description ‘hard’ to indicate that it is the heavy
quark mass which acts as the effective infrared cutoff for the
new double logarithms.

+2 F 2F2(1, 1; 2,
3
2
;

CA

4CF
F)

}
exp (FA) (3)

where

FA ≡ −CF
αs

2π

(
1
2

log2 m2

s
+ log

m2

s
log

λ2

m2

)
(4)

F ≡ −CF
αs

4π
log2 m2

s
(5)

denote the soft and hard one–loop form factors, respec-
tively. A fictitious gluon mass λ is introduced to regu-
late the infrared divergences in the former. Of course in a
physical cross section, the soft form factor FA cancels the
corresponding infrared divergent contributions from the
emission of real soft gluons. For the two–jet–like contri-
butions considered in this work, i.e. soft gluon radiation
below an energy cut of kg ≤ ε

√
s and arbitrarily hard glu-

ons collinear with one of the b-quarks (specified by a cone
of half–angle δ), we need to make sure that the jet defi-
nition does not restrict the exponentiation of the energy
cut dependent piece of the soft gluon matrix elements. In
this case we are able to give the contribution of the real
soft DL corrections to all orders by writing

dσDL
virt+soft

d cos θ
∼ |M|2DL exp {−2FA + ∆c} (6)

where the last term in the exponential ∆c depends on the
soft–gluon cut prescriptions. Restricting the gluon ener-
gies by Eg ≤ kc, for example2, gives to leading logarithmic
order,

∆c = −αsCF

π
log

s

m2
q

log
s

4k2
c

(7)

At one loop, however, such DL expressions are insufficient
as the integrated real gluon contributions also include sub-
leading logarithms with a cut dependence. For our jet def-
inition, we are actually able to employ exact expressions
for the infrared divergent functions as these have the same
structure as in the QED case [11,12]. We therefore use (as-
suming only m2

q/s � 1):

∆c = −αsCF

π

(
log

s

m2
q

log
s

4k2
c

− log
s

4k2
c

+
π2

3

)
(8)

(cf. (7)), which leads to the physical cross section for vir-
tual and soft (Eg < kc) real gluon emissions:

σDL
virt+soft = σBorn

{
1 + F 2F2(1, 1; 2,

3
2
;
1
2
F)

+2 F 2F2(1, 1; 2,
3
2
;

CA

4CF
F)

}2

exp
(

αsCF

π

[
log

s

m2
q

(
1
2

− log
s

4k2
c

)

+ log
s

4k2
c

− 1 +
π2

3

])
(9)

2 One could also use an invariant mass (‘ycut’) type cutoff.
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Fig. 1. The size of the virtual double logarithmic (DL) contri-
butions relative to the Born cross section through four loops.
The ‘exact’ result (open circles) is given by the all orders re-
summation according to (9) and is in very good agreement
with the four–loop approximation given in (10). The huge one
and two loop contributions can be seen to lead to physically
distorted results

When combined with hard (Eg > kc) real gluon emis-
sion appropriate to some particular (i.e. two–jet–like) final
state topology, the logarithmic dependence on the cutoff
kc will cancel and the Sudakov form factor will become
O(1). The remaining double logarithmic corrections then
come entirely from the hard {}2 non–Sudakov form fac-
tor. In order to demonstrate the numerical impact of these
logarithms we list the expansion of the {}2 piece in (3).
Using the coefficients in the series expansion for the hy-
pergeometric function, we obtain the expansion through
four loops:

σDL
virt

σBorn
∼ 1 + 6F +

1
6

(
56 + 2

CA

CF

)
F2

+
1
90

(
94 + 90

CA

CF
+ 2

C2
A

C2
F

)
F3

+
1

2520

(
418 + 140

CA

CF
+ 238

C2
A

C2
F

+ 3
C3

A

C3
F

)
F4

+O (F5) (10)

where F = −CF
αs

4π log2 m2

s is again the one–loop hard
form factor. This expansion demonstrates that it is not
sufficient, as suggested in [9], to only consider the first
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Fig. 2. The relative size of the virtual double logarithmic con-
tributions through three (squares) and four (triangles) loops.
With the expected experimental precision [6] one needs to in-
clude at least four–loop corrections or simply the resummed
values according to (9)

two coefficients in (21) of that paper (corresponding to the
terms up to O (F2

)
in the above expansion). While the

amplitude form factor series in (3) converges well after the
first two terms, the interference terms on the cross section
level require the inclusion of the four loop contribution
according to (10).

Figure 1 shows the respective contributions3 of the
terms listed in (10) relative to the Born cross section (2).
For illustration, we use parameter values of αs = 0.11 and
m ≡ mb = 4.5 GeV, so that F varies between −0.45 at√

s = 100 GeV and −0.67 at
√

s = 200 GeV The large
cancellations between the lower order terms are clearly
visible and only the four–loop expansion is close to the
exact resummed result. The relative size of the doubly
logarithmic three– and four–loop corrections with respect
to the full answer are depicted in Fig. 2. While taking only
the three–loop expansion leads to a deviation of up to 50%
compared to the exact result, the four–loop DL cross sec-
tion (10) stays within a few percent. In the next section
we present the results based on inclusion of the full one–
loop radiative corrections including the full two–jet–like
bremsstrahlung contribution.

3 Note that here the ‘n–loop contribution’ means the sum of
the contributions up to and including the nth order contribu-
tion in (10).
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3 Numerical results

The results of the previous section confirm that the hard
double logarithms are numerically important when one is
considering bb production in the

√
s = 100 − 200 GeV en-

ergy range. The one–loop contribution on its own tends
to drive the cross section negative, and stability is only
achieved at four–loop order in the cross section. However
before drawing definite conclusions, it is important to as-
sess the other contributions to the physical cross section,
in particular (i) the sub–leading logarithmic corrections
to the virtual + soft form factors and (ii) the contribu-
tions from hard gluon emission. Unfortunately at present
we know nothing about these beyond first order. However
the first–order result is worth studying in detail, since it
allows us to assess the dominance or otherwise of the ‘6F ’
hard double logarithm term in (10).

We first need to define an infrared safe two–jet cross
section.4 As discussed in the Introduction, our interest
here is in two jet like configurations, where each jet con-
tains a b quark. It is convenient, for purposes of illustra-
tion, to use a modification of the Sterman–Weinberg (SW)
two jet definition [13]. At leading order (i.e. γγ → bb) all
events obviously satisfy the two–b–jet requirement. We ap-
ply an angular cut of |cos θb,b| < 0.7 to ensure that both
jets lie in the central region. This defines our ‘leading or-
der’ (LO) cross section. At next–to–leading order (NLO)
we can have virtual or real gluon emission. For the latter,
an event is defined as two–b–jet like if the emitted gluon

either I. has energy less than ε
√

s, with ε � 1,

or II. is within an angle 2δ of the b or b,
again with δ � 1.

We will call the two regions of phase space I and II respec-
tively. We further subdivide region I according to whether
the gluon energy is greater or less than the infrared cut-
off5 kc (< ε). We combine the region of soft real gluon
phase space Eg < kc with the virtual gluon contribution
to give σSV. The region Ĩ of ‘hard’ real gluon phase space
kc < Eg < ε

√
s then defines σĨ. The total NLO two–b–jet

cross section is then

σNLO = σSV + σĨ + σII (11)

The cross section for σSV is obtained from the analytic
expression given in [7], while σĨ and σII are computed
using the numerical program of [6]. A powerful consistency
check on the overall calculation is that the sum σSV + σĨ
should be independent of the unphysical parameter kc.
This is demonstrated in Fig. 3, which shows the individual
contributions as a function of

√
s for two choices, kc =

1 GeV and 0.1 GeV and with ε = 0.1. While the individual
contributions are of course different (the leading behavior
as kc → 0 is ∼ ± log(s/m2

q) log(s/k2
c ) for the separate

4 Note that all cross sections discussed and calculated here
correspond to the JZ = 0 γγ polarization state.

5 Note that unlike ε, kc is an unphysical parameter intro-
duced simply to separate soft and hard real emission.
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Fig. 3. Virtual and real (Eg < kc, kc < Eg < 0.1
√

s) contribu-
tions to the exact next–to–leading order two–b–jet cross section
defined in the text. The hard double logarithm contribution at
this order (6F) is also shown

SV and Ĩ contributions), the sums are indistinguishable.
We can therefore conclude that for this part of the two–
jet phase space (SV + Ĩ), the next–to–leading order cross
section is between −2 and −3 times the leading order cross
section.

Also shown in Fig. 3 is the ‘6F ’ hard double logarithm
contribution. Quite remarkably, this is close to the com-
plete result, demonstrating that the net effect of the ad-
ditional subleading real and virtual contributions is small
and positive, at least for this choice of parameters (in par-
ticular ε). In fact to a very good approximation, in this
energy range,

σSV + σĨ = σLO
[
6F + 0.3 + 0.001

√
s (GeV)

]
(12)

We may conclude that including the higher–order terms
in the hard form factor does give an improved prediction
for the cross section, and in particular restores positivity
for this region of two–jet phase space.

The remaining part of the two–b–jet cross section, σII,
is shown relative to σLO in Fig. 4, for three choices of
the cone size δ. Consistent with the results presented in
Fig. 3, the parameter ε is again fixed at 0.1. Notice that
this part of the two–jet cross section is large and positive
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Fig. 4. Variations of the one–loop real bremsstrahlungs con-
tribution to the cross section. One can clearly see the removal

of the
m2

q

s
suppression as the available phase space is enlarged

and approximately linear in δ. The reason for this was
first pointed out in [6]: for mq � Eg � √

s the qqg cross
section behaves as

dσ

dEg
(γγ → qqg, Jz = 0) ∼ α2 αs

E3
g

s3 [. . .] (13)

i.e. with no m2
q/s suppression. This part of the cross sec-

tion is therefore dominated by hard gluon emission, i.e.
the b quark in one of the two b–jets is likely to be soft.
The non–m2

q/s–suppressed cross section has no collinear
singularity either, and so the dependence on the cone size
δ is simply determined by phase space, i.e. σII ∼ O(δ), for
δ � 1. An efficient suppression of the background to the
Higgs signal will therefore necessitate selecting narrow b
jets in which the heavy quark carries a large fraction of
the jet momentum.

4 Summary and conclusions

In the previous section we have studied two types of cor-
rection to the (Jz = 0) γγ → qq cross section: the all–
orders resummed hard quark mass double logarithms, and
the exact next-to-leading order (one–loop) corrections.
Motivated by the topology of the Higgs signal, to which
our contributions are a background, we have focused on
the two–b–jet cross section, defined here by two parame-
ters, an ‘energy outside the cone’ parameter ε and a cone
size parameter δ. Furthermore we have shown that the
part of the NLO cross section corresponding to virtual
and soft real gluon emission is dominated by the leading
double hard logarithm. This emphasizes the importance
of resumming these contributions. On the other hand, the
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Fig. 5. The total two–b–jet cross section (i.e. exact next–to–
leading order contribution plus resummed hard form factor)
normalized to leading order, for various jet parameters (ε, δ).
Also shown (dashed line) is the hard form factor part alone

hard collinear gluon part of the cross section is sizable and
depends quite sensitively on the jet parameters.

Our results are summarized in Fig. 5, where we display
(solid curves) the total two–jet cross section (i.e. exact
next–to–leading order contribution plus resummed hard
form factor) for four choices of the parameters (ε, δ). Also
shown (dashed curve) is the hard form factor part alone.
This is of course independent of the jet definition. The
form factor evidently gives a significant contribution to the
total cross section, especially for narrow jets. From Fig. 1,
we see also that using only the one–loop (6F) part of the
hard form factor would result in a negative two–jet cross
section for narrow jets, a result first pointed out in [7].
With the resummed form factor, positivity and stability
is restored.

An additional potentially important higher–order con-
tribution for large energies comes from the square of the
imaginary part of the one–loop box diagram. An explicit
calculation gives [7]

dσIm

dσBorn
(γ + γ −→ q + q, Jz = 0)

≈ α2
s

18π2

s

m2
b

cos2 θ(1 − cos2 θ)

≤ α2
s

72π2

s

m2
b

(14)

Note that, unlike σBorn, this contribution has no m2
q/s

suppression and therefore eventually dominates the cross
section at very high scattering energy. For the energies
considered here, however, it is negligible.

What can we say about the corrections not included
in Fig. 5? Of course the unknown exact NNLO corrections
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could be important, especially for the hard collinear con-
tributions to the two–jet cross section. We note here that,
as at NLO, there is no m2

q/s suppression of such terms,
but tightening the two–jet requirement will tend to re-
duce their significance. We might again expect that the
hard form factor is the dominant part of the virtual/soft
multigluon contributions. Note also that as long as the pa-
rameter ε is not taken to be too small, in which case large
logarithms (∼ αs log(m2

q/s) log ε) and the effective scale of
αs would require resummation, the Sudakov form factor
(see (9)) should not play a major role. Finally, it is possible
that the sub-leading (e.g. αn

s log2n−1(m2
q/s)) logarithmic

contributions to the hard form factor are important (al-
though this is not suggested by our exact next–to–leading
order studies). The calculation beyond NLO would seem
to be an extremely difficult task however [10].

In conclusion, we have demonstrated the numerical im-
portance of the ‘hard’ (non-Sudakov) log2(m2

q/s) contri-
butions to the JZ = 0 γγ → bb cross section at typical
photon collider energies relevant for intermediate–mass
Higgs searches. Our study, although it includes for the
first time all the currently available theoretical informa-
tion, is of course far from complete.6 We have not, for
example, included running αs, hadronization or detector
effects. These would require dedicated Monte Carlo stud-
ies, such as those performed in [6] for example. In this con-
text, it is worth pointing out that including the new hard
logarithm form factor in such studies should be straight-
forward.

6 A more detailed phenomenological analysis will be pre-
sented elsewhere [14].
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